Showing posts with label implications. Show all posts
Showing posts with label implications. Show all posts

Wednesday, April 6, 2016

Amino Acid Supplement With High Amount of Isoleucine Increases Clearance of Dextrose Supplement But Impairs Post Workout Glycogen Resynthesis in Man Implications

Post-Workout High Isoleucine AA+CHO Decreases Glucose Spikes, But Impairs Musclular Glyocogen Resynthesis - Reason Enough to Skip Amino Acids?
If you put any faith into the promises of the supplement industry, amino acid supplements are the solution to all your problems - including those you havent even known about, yet. Against that background its always interesting if scientists study the real world effects of amino acid supplements in a realistic scenario like after strenuous exercise.

In their latest study Wang and colleagues from the University of Texas at Austin and the Shanghai Research Institute of Sports Science did just that: They studied the effects isoleucine and four additional amino acids, on blood glucose homeostasis and glycogen synthesis after strenuous exercise.
Learn more about amino acid and BCAA supplements at the SuppVersity

Glutamine Helps W/ Diabetes

Whey + Casein Beat GLU + BCAA

Alanyl-Glutamine is it any good?

GLU for Glycogen Repletion?

GLU as Intra-Workout BV?

BCAAs deplete neurotransmitters
As the scientists point out, the results of their study "could provide a practical and safe means of increasing the rate of muscle glycogen synthesis after exercise and enhancing the rate of recovery" (Wang. 2015).
Table 1:  Subjects’ characteristics (Wang. 2015).
Ten healthy active adults volunteered for the study. All subjects were accustomed to cycling for prolonged periods of 3–5 h during an exercise session. The ,aximum oxygen uptake (VO2max) was measured in all subjects on a cycle ergometer by using a TrueOne 2400 metabolic measurement system (ParvoMedics, Sandy, Utah) to verify adequate aerobic fitness levels (results see Table 1).
Figure 1: Basically the AA supplement contained almost exclusively isoleucine. It was administered in the dosage shown above and at twice that amount in the LAA and HAA trials (Wang. 2015)
"Two to three days after the VO2max test, the subjects reported to the laboratory to perform a practice ride to familiarize them with the laboratory environment and the experimental protocol. The practice ride was also used to adjust and verify appropriate workloads for the experimental trials. The practice rides simulated the protocol ride but without blood samples or muscle biopsies being taken. The ride consisted of cycling at 70 % VO2max for 2 h, which was followed by five 1-min sprints at 85 % VO2max. The sprints were separated by 1 min cycling at 45 % VO2max. During the first 15 min of each hour, oxygen uptake was measured for 5 min to verify workload.

Water (250 mL) was provided every 20 min of exercise. Heart rate (HR) was monitored and ratings of perceived exertion (RPE) on a Borg-scale (ranging from 6 to 20) were collected every 30 min of exercise. The practice ride and each of the following three experimental trials were separated by a minimum of 7 days and maximum of 12 days" (Wang. 2015).
The actual tests consisted of cycling on an ergometer to deplete muscle glycogen. Blood sampling and a muscle biopsy were performed immediately on cessation of exercise. After the muscle biopsy, subjects were given the first of two supplement doses. More specifically they received either...
  • 1.2 g carbohydrate/kg body weight (CHO), 1.2 g carbohydrate/kg body weight plus 6.5 g AA (CHO/LAA) or 
  • the same carbohydrate supplement plus 6.5g (CHO/LAA) or 13 g AA (CHO/HAA) 
immediately after the first muscle biopsy and at 120 min of recovery. The carbohydrate base consisted of simple dextrose dissolved at a ratio of 100g/296 mL in an orange flavored drink (SUN-DEX, Fisher Healthcare, Houston, Texas). The additional amino acids contained 0.046 g cystine 2HCl, 0.023 g methionine, 0.045 g valine, 6.342 g Isoleucine, and 0.044 g leucine per person, or twice that amount in the CHO/HAA trial. The amino acids were simply added to the dextrose drink.

Why would you even believe that there may be benefits from AA supplementation?

As Wang et al. point out, "this amino acid mixture was selected as it was previously reported to be more effective in lowering the blood glucose response to a glucose challenge than isoleucine alone" (Wang. 2015) by Bernard et al. (2011).
Figure 2: Blood glucose AUC during the oral glucose tolerance test (OGTT). Sprague-Dawley rats were gavaged with either glucose (CHO), glucose plus a 5-amino acid mixture (CHO-AA-1), glucose plus a 5-amino acid mixture with increased leucine concentration (CHO-AA-2), or placebo (PLA). Blood was taken from the tail immediately before the gavage and 15, 30, 60, and 120 min afterward (Bernard. 2011).
The three test beverages were similar in color, taste, and texture to allow a double-blinded and counter-balanced study design. All test drinks were randomly assigned and dispensed by a laboratory technician who was not involved in the data collection.
Figure 3: Blood glucose postexercise and during the 4-h recovery. Treatments were with CHO (circle), CHO/LAA (triangle), and CHO/HAA (filled circle) supplements provided immediately after and 2 h after exercise. Values are mean ± SE. CHO/HAA vs. CHO (*p < 0.05). CHO/LAA vs. CHO (# p < 0.05) - left; Blood glucose area under the curve (AUC) during the 4-h recovery. Treatments were CHO, CHO/LAA, and CHO/HAA supplements provided immediately after and 2 h after exercise. AUC was calculated with baseline (pre). Values are mean ± SE. CHO/HAA vs. CHO (*p < 0.05). CHO/LAA vs. CHO (# p < 0.05) - right (Wang. 2015).
As the data in Figure 3 indicates,There was a similar effect in humans as it has previously been observed in rodents. An effect of which you as a SuppVersity reader know that it is probably mostly ascribable to isoleucine (see "The Glucose-Repartitioning Effects of Isoleucine" | more).
Glucose modulation without glycogen optimization?! How does that work? Well, obviously glucose can also be oxidized or used to replete ATP in the muscle. It is at least no real news that isoleucine will decrease glucose levels in the blood and increase glucose uptake in the muscle without, however, producing increased glycogen levels. For example, Doi et al. (2005) reported that an oral administration of 1.35 g/kg isoleucine in food-deprived rats significantly decreased the plasma glucose concentration and increased glucose uptake in the muscle of rats without an increase in muscle glycogen storage.
Figure 4: Total muscle glycogen storage in the vastus lateralis during the 4-h recovery from intense cycling. Treatments were CHO, CHO/LAA, and CHO/HAA supplements provided immediately after and 2 h after exercise. Values are mean ± SE. CHO/HAA vs. CHO (*p < 0.05 | Wang. 2015)
What is a bit disappointing is the fact that the decrease in blood glucose did not come with an increase in glycogen storage.

As the data in Figure 4 shows, the exact opposite was the case. After 4h of recovery the muscle glycogen levels were not higher, but lower in the amino acid supplemented trials.

For diabetics this wouldnt be a problem. For athletes its yet clearly a disadvantage that the 4-g recovery glycogen levels were lower and significantly lower in the low and high dose amino acid supplement trials.

Eventually this result is surprising because specifically in the high amino acid group (a) the insulin levels, (b) the AS160, a protein that controls insulin mediated glucose uptake, (c) the mTOR & p-AKT levels, (d) the "exercise hormon" levels of serum irisin  and (e) the levels of glycogen synthase which stores carbs in forms of glycogen in the high dose AA trials were significantly elevated.
Bottom line: While the study at hand did confirm that isoleucine (in conjunctio with other, but probably irrelevant amino acids) will improve the glucose response to high GI carbohydrates, it did not confirm the assumption that this makes isoleucine the ideal intra- and/or post-workout amino acid to optimize glycogen synthesis and thus post-workout recovery. For diabetics the increase in insulin and the corresponding decrease in glucose response still is a major plus. This assumes that the insulin increase occurs in the obese (in previous studies by Wang et al. (2012) an increased insulin release to a high isoleucine AA mixture was not observed) and / or that there is an independent effect of the amino acid mixture on glucose uptake in the muscle or the periphery.

In contrast to the high isoleucine amino acid supplement that was used in the study at hand, plain whey protein does increase glycogen storage after workouts - significantly, as the data Ivy et al. generated in a 2004 randomized controlled human study involving well-conditioned subjects observed (Ivy. 2004).
For athletes, however, it appears to be detrimental as it reduces the rate of muscle glycogen synthesis after workouts and puts a questionmark behind the "repartitioning effects" of amino acids - if there is a repartitioning effect involved, here, it would be away from the glyocogen stores of your muscle. An effect that may be related to the increase in mTOR which triggers protein synthesis via p70S6k which inactivates the glycogen synthase kinase-3 (Armstrong. 2001). This would indicate that you cannot have both maximal protein & glycogen synthesis and thus relativize the obvious conclusion that isoleucine supplements are not suitable for athletes. What it wont do, though, is to provide the missing evidence that amino acid supplements have an advantage over whey, which has been shown to increase glycogen synthesis and storage (Morifuji. 2005, 2010; Zawadzki. 1992; Ivy. 2002, 2008) - why would you use AAs, then? | Comment on Facebook!
References:
  • Armstrong, Jane L., et al. "Regulation of glycogen synthesis by amino acids in cultured human muscle cells." Journal of biological Chemistry 276.2 (2001): 952-956.
  • Bernard, Jeffrey R., et al. "An amino acid mixture improves glucose tolerance and insulin signaling in Sprague-Dawley rats." American Journal of Physiology-Endocrinology and Metabolism 300.4 (2011): E752-E760.
  • Doi, Masako, et al. "Isoleucine, a potent plasma glucose-lowering amino acid, stimulates glucose uptake in C2C12 myotubes." Biochemical and biophysical research communications 312.4 (2003): 1111-1117. 
  • Ivy, John L., et al. "Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement." Journal of Applied Physiology 93.4 (2002): 1337-1344.
  • Ivy, J. L., et al. "Post exercise carbohydrate–protein supplementation: phosphorylation of muscle proteins involved in glycogen synthesis and protein translation." Amino acids 35.1 (2008): 89-97.
  • Morifuji, Masashi, et al. "Dietary whey protein increases liver and skeletal muscle glycogen levels in exercise-trained rats." British journal of nutrition 93.04 (2005): 439-445.
  • Morifuji, Masashi, et al. "Post-exercise carbohydrate plus whey protein hydrolysates supplementation increases skeletal muscle glycogen level in rats." Amino acids 38.4 (2010): 1109-1115.
  • Wang, Bei, et al. "Amino acid mixture acutely improves the glucose tolerance of healthy overweight adults." Nutrition Research 32.1 (2012): 30-38.
  • Zawadzki, K. M., B. B. Yaspelkis, and J. L. Ivy. "Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise." J Appl Physiol 72.5 (1992): 1854-9.


Read more »

Wednesday, January 27, 2016

Hair Mineral Analysis Significant Correlations Between Calcium Magnesium Potassium Sodium and Met Syn Insulin Resistance Waist BP etc Implications

Does her hair hold the secret to her fitness body? Actually thats unlikely, but it appears possible that a hair analysis could reveals whats keeping you back from a similarly amazing physique.
Hair mineral analyses have been discredited by certain snake oil vendors who use them to sell their "oils" in form of an endless list of "essential" supplements youd have to take if you dont want to end up as dead as the hair they used to produce the analysis. Still, they share one big strength with the more expensive RBC or other cell tests: They give you an idea of your actual calcium, magnesium, sodium and potassium balance.

Much in contrast to serum levels, by the way. If those are off, its either due to an acute event (like diarrhea, for example ;-) or you have a real reason to be concerned. There is after all a really good reason these minerals are also called "electrolytes": They are heavily involved in the ion and thus charge-exchange that keeps your heart beating!
Serum analyses tell you if your heart will keep beating, but what do hair analysis tell you? Thats a very valid question and the answer is NOTHING! You can use them to estimate your mineral balance, but a high calcium level in the hair, does not necessarily imply a high level in other body parts. Moreover, correlations as I am about to report them in todays SuppVersity article allow for hypotheses about causative effects, what they dont do, though is to prove cause and effect! Please keep that in mind while reading this article and before your next visit at your favorite quack.
Before we get to the actual hair mineral analysis data, lets briefly have a look at another set of striking and not so striking differences between the "normal" subjects and those with established metabolic syndrome:
Figure 1: Serum mineral concentrations, visceral (VAT) and subcutaneous body fat and smoking status in subjects w/ and w/out metabolic syndrome (Choi. 2014)
If you take a closer look at the data in Figure 1 you will see that - aside from marginal, but statistically non-significant differences in serum phosphor - the often-checked total Ca, Mg, K, Na & Ph concentrations did not differ between the two groups.
Potassium, insulin resistance & obesity: Later in this article you will learn that there was a negative association between the amount of potassium in the hair of the subjects and their HDL and insulin sensitivity. Its important not to confuse this with the message "potassium is bad for your insulin sensitivity" - in fact, in 1980, Rowe et al. observed significant decreases in plasma insulin response  to sustained hyperglycemia and a ~30% reduction in glucose metabolism (Rowe. 1980).
Moverover, visceral fat was a much more reliable parameter to distinguish the healthy and unhealthy subjects than subcutaneous fat and... a bit to my surprise: Smoking appears to be associated with a lower metabolic risk than non-smoking.

Lets take a look at the hair analysis, now

Much in contrast to the serum levels, the hair mineral analysis did reveal significant inter-group differences and corresponding correlations:
Of all potentially toxic molecules the researchers measured only the levels of arsenic and lead differed significantly between the two groups. The concentrations of cadmium, mercury, and aluminum were not different between the two groups, on the other hand, did not.
And what does that mean? If we take a parting look at the data in Table 1, you will see that, the one parameter that makes all the difference is none of the minerals. Its rather an old acquaintance: The total amount of visceral fat. With a p-value of p = 0.000 its the best parameter we have to identify someone with metabolic syndrome. The hair minerals, on the other hand, may present with associations with individual features of the metabolic syndrome, namely...
Table 1: Multiple logistic regression analysis for hair mineral concentrations with metabolic syndrome (Choi. 2014)
  • low calcium, low magnesium ? high blood pressure, high blood sugar, triglycerides, weight and waist,
  • high sodium, high potassium ? low HDL,
  • high copper ? low blood pressure, low weight, low waist, high insulin sensitivity,
  • high chromium ? high weight, high waist, and
  • high cobalt ? low blood pressure
Now, since, we dont know how exactly the hair mineral content ant the nutritional intake are connected, it is very difficult to make any recommendations based on these observations.

What appears to be relatively certain, though, is that these new findings dont change anything about my previous recommendation to make sure that you get enough calcium and magnesium - the thing about potassium, on the other hand, strikes me as odd. As an antagonist to calcium, the negative effects of K may yet simply be a result of a Ca deficiency in the average mid-40s subjects in the study at hand.
References:
  • Choi, Whan-Seok, Se-Hong Kim, and Ju-Hye Chung. "Relationships of Hair Mineral Concentrations with Insulin Resistance in Metabolic Syndrome." Biological Trace Element Research (2014): 1-7.
  • Rowe, John W., et al. "Effect of experimental potassium deficiency on glucose and insulin metabolism." Metabolism 29.6 (1980): 498-502.


Read more »

Sunday, January 10, 2016

Supplement Sensation Oral Glutathione Supplements Dose Dependently Double GSH in Randomized Controlled Human Studies Health Implications Still to Be Determined

Blueberries and other foods w/ tons of polyphenols are GSH boosters (Moskaug. 2005) and make supplements obsolete. 
If you have been interested in dietary supplements for some time, I am pretty sure that you will have heard about oral glutathione ob(GSH) supplements in one of the "snake oil warnings" on various websites. The "master antioxidant" as it is called is after all believed by many to be not bioavailable - at least not orally. Studies in animal models, however, have already shown that oral GSH, administered either in the diet or by gavage, has the ability to increase plasma and tissue GSH levels ( Loven. 1986; Aw. 1991; Favilli. 1997; Kariya. 2007). It would thus be more appropriate to say that the efficacy of oral glutathione in humans has not yet been tested in peer-reviewed studies.
You can learn more about potential negative sides of too many / the wrong antioxidants:

NAC = GSH ?, Anabolism ?

Too Much "Vit C" For Gains?

Protein requ. of athletes

Block inflamma- tion, choke fire

C + E Get Avg. Joes Ripped

ROS Management Not Eradication
Now, the absence of human studies should definitely ring an alarm bell in the head of every healthily skeptic supplement user, what it should not do, though is mislead you to believe that GSH supplements dont work in human beings.

Now this is where John P. Richie Jr. and his colleagues from the Penn State Cancer Institute, the Department of Microbiology and Immunology at the Penn State University College of Medicine and the Orentreich Foundation for the Advancement of Science, come into play. As the scientist state, their "objective was to determine the long-term effectiveness of oral GSH supplementation on body stores of GSH in healthy adults." (Richie. 2014)
Warning - keep an eye on your wallets: Even if the supplements work, they are probably going to be expensive and in view of the fact that "the increases were dose and time dependent, and levels returned to baseline after a 1-month washout period" (Richie. 2014), you will (a) have to take plenty to achieve maximal effects and (b) do that year-round. In view of the fact that we still dont have evidence of any downstream health benefits, I would thus be hesitant to recommend buying a GSH supplement at the moment - specifically if you are healthy, eat clean and work out!
To this end, they conducted a 6-month randomized, double-blinded,placebo-controlled trial in the course of which the subjects, 41 women and 13 men (6 dropouts not included) with a normal BMI and no known health issues, consumed either ...
  • an oral GSH supplement dosed at 250mg/day,
  • an oral GSH supplement dosed at 1,000mg/day, or
  • an identically looking placebo.
The main study outcomes were obviously analyses of the GSH levels in (a) blood, (b) erythrocytes, (c) plasma, (d) lymphocytes and (e) exfoliated buccal mucosal cells (the effects on a battery of immune markers was tested only in a handful of subjects).
Figure 1: Effects of 6 months GSH supplementation on ratio of oxidized to reduced GSH and natural killer cell cytotoxicity in healthy men and women aged 28-72y (Richie. 2014)
As the data in Figure 1 already suggests, there was a dose-dependent increase in GSH levels. With the high dose (1,000mg/day) producing GSH increases of 30–35 % in erythrocytes, plasma and lymphocytes and 260 % in buccal cells (P<0.05) and increases of 17 and 29 % in blood and erythrocytes, respectively, in the low-dose group (P<0.05 - data not shown in Figure 1).

These improvements had beneficial downstream effects on the overall status of the subjects antioxidant defense system. A fact you can conclude based on the decreased ratio of oxidized (used) to reduced (fresh) glutathione in whole blood the scientists observed in their subjects after 6 months. These benefits came hand in hand with an increase in natural killer cytotoxicity (+100%), another potentially highly desirable health benefit.
Inflammatory cytokines wont build muscle. Without them, however, your body wont notice that its time to adapt and w/ too much glutathione just that could happen.
Bottom line: The fact that they obviously are bioavailable and have potent antioxidant and immune-strengthening effects make glutathione supplements particularly attractive for anyone who is suffering from chronic inflammation (obesity, diabetes, or both) and/or taking anti-inflammatory, but immune suppressive drugs (autoimmune diseases from simple allergies over asthma and rheumatism to multiple sclerosis).

Whether you, the not-so-average SuppVersity reader will feel, let alone see any benefits from using these supplements is in my humble opinion highly questionable. And in case youve already forgotten about the Janus-faced effects the GSH-booster N-acetyl-cysteine will have on training induced muscle injury, cytokine expression and anabolic signalling, Id suggest you take another look at an almost 12-months old follow-up to the SuppVersity Science Round-Up.

References:
  • Aw, Tak Yee, Grazyna Wierzbicka, and Dean P. Jones. "Oral glutathione increases tissue glutathione in vivo." Chemico-biological interactions 80.1 (1991): 89-97.
  • Favilli, Fabio, et al. "Effect of orally administered glutathione on glutathione levels in some organs of rats: role of specific transporters." British journal of nutrition 78.02 (1997): 293-300.
  • Kariya, Chirag, et al. "A role for CFTR in the elevation of glutathione levels in the lung by oral glutathione administration." American Journal of Physiology-Lung Cellular and Molecular Physiology 37.6 (2007): L1590.
  • Loven, Dean, et al. "Effect of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptozocin-induced diabetes." Diabetes 35.5 (1986): 503-507.
  • Moskaug, Jan Ø., et al. "Polyphenols and glutathione synthesis regulation." The American journal of clinical nutrition 81.1 (2005): 277S-283S.
  • Richie Jr, John P., et al. "Randomized controlled trial of oral glutathione supplementation on body stores of glutathione." European journal of nutrition (2014): 1-13.


Read more »